Skip to content

Blog Archive

RadarSimPy v12.3.x Release

  • by

RadarSimPy v12.3.x is the latest version of our radar simulation software, packed with new features, enhancements, and optimizations to provide you with an even better radar simulation experience. This release brings improvements in performance, user interface, and functionality.

Cross-Polarization and Co-Polarization RCS

  • by

In this example, we demonstrate how the RadarSimPy framework can be applied to derive the Cross-Polarization and Co-Polarization RCS of a corner reflector.

RadarSimM v2.0 Release

  • by

RadarSimM v2.0 is the latest version of our radar simulation software, packed with new features, enhancements, and optimizations to provide you with an even better radar simulation experience.

Interferometric Radar

  • by

Consider utilizing RadarSimPy for a simulation example involving interferometric radar. This simulation employs RadarSimPy to capture subtle movements of an ideal point target, showcasing the radar’s measurement capabilities.

Interference

  • by

In this illustrative example, we will showcase the process of configuring an interference radar within the simulation environment. Subsequently, we will delve into the exploration of its consequential impact on the baseband samples of a victim radar.

DoA Estimation

  • by

RadarSimPy boasts a comprehensive collection of prevalent DoA algorithms and beamformers within its processing module. The following example adeptly showcases the practical application of these algorithms within the realm of a simulated MIMO FMCW radar scenario.

Imaging Radar

  • by

This illustration serves as a prime example of employing ray tracing to simulate the response of a MIMO imaging radar when exposed to a pre-defined 3D scene. This simulation harnesses the robust capabilities of the RadarSimPy framework. Additionally, it provides a fundamental demonstration of the radar signal processing techniques used to generate an image of the scene.

Multi-Path Effect

  • by

In this example, we will employ RadarSimPy’s ray tracing capabilities to demonstrate how vertical multipath effects from the ground can impact the received signal amplitude in an FMCW radar system.

Micro-Doppler

  • by

In this demonstration, we harness the formidable ray tracing capabilities offered by RadarSimPy to simulate the micro-Doppler signature generated by a rotating turbine.

Doppler of a Turbine

  • by

In this demonstration, we leverage the powerful ray tracing capability of RadarSimPy to simulate the intricate Doppler signatures induced by a rotating wind turbine. Additionally, we showcase the step-by-step process of plotting these Doppler signatures on a spectrogram, providing a visual representation of the frequency shifts caused by the turbine’s rotation.